Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm
نویسندگان
چکیده
منابع مشابه
Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm.
Optical scanning holography (OSH) records a three-dimensional object into a two-dimensional hologram through two-dimensional optical scanning. The recovery of sectional images from the hologram, termed as an inverse problem, has been previously implemented by conventional methods as well as the use of l₂ norm. However, conventional methods require time consuming processing of section by section...
متن کاملA Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also kno...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولSpeech Signal Reconstruction using Two-Step Iterative Shrinkage Thresholding Algorithm
The idea behind Compressive Sensing(CS) is the reconstruction of sparse signals from very few samples, by means of solving a convex optimization problem. In this paper we propose a compressive sensing framework using the Two-Step Iterative Shrinkage/ Thresholding Algorithms(TwIST) for reconstructing speech signals. Further, we compare this framework with two other convex optimization algorithms...
متن کاملA Fast Iterative Shrinkage-Thresholding Algorithm for Electrical Resistance Tomography
Image reconstruction in Electrical Resistance Tomography (ERT) is an ill-posed nonlinear inverse problem. Considering the influence of the sparse measurement data on the quality of the reconstructed image, the l1 regularized least-squares program (l1 regularized LSP), which can be cast as a second order cone programming problem, is introduced to solve the inverse problem in this paper. A normal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2012
ISSN: 1094-4087
DOI: 10.1364/oe.20.005942